Even More Routing

EE122 Fall 2012
Scott Shenker
http://inst.eecs.berkeley.edu/~ee122/

Materials with thanks to Jennifer Rexford, lon Stoica, Vern Paxson
and other colleagues at Princeton and UC Berkeley

Vs

Today’s Lecture: A little of everything

~N

* Finishing up distance vector routing
—Last time we covered the good
—This time we cover the bad and the ugly

» Covering some “missing pieces”
—Maybe networking isn’t as simple as | said....

* Lots of details today...
—So | will go slowly and ask you to do the computations
—Will have you ask your neighbors if you can't figure it out
o If they can't figure it out, sit next to smarter people next time!

Y

p
Distance Vector Routing

» Each router knows the links to its neighbors
—Does not flood this information to the whole network

« Each router has provisional “shortest path”
—E.g.: Router A: “I can get to router B with cost 11"

* Routers exchange this Distance-Vector
information with their neighboring routers
—Vector because one entry per destination
— Why only advertise “best” path? Why not two best?
o Loops and lies....

* Routers look over the set of options offered by
their neighbors and select the best one

« lterative process converges to set of shortest

Vs

Questions about Project 1

S

naths

+ Colin goes into cone of silence for next 30 hours

* So ask your questions now!

p
Two Ways to Avoid Loops

* Global state, local computation

—Link-state
—Broadcast local information, construct network map

* Local state, global computation
— Distance-Vector
—Minimizing “cost” will produce loop-free routes
— Iterative computation: no one knows the topology

p
Information Flow in Distance Vector

s

(" 2\
Bellman-Ford Algorithm

« INPUT:
—Link costs to each neighbor
—Not full topology

*« OUTPUT:
—Next hop to each destination and the corresponding cost
—Does not give the complete path to the destination

* My neighbors tell me how far they are from dest'n
—Compute: (cost to nhbr) plus (nhbr’s cost to destination)
—Pick minimum as my choice
— Advertise that cost to my neighbors

Vs

Bellman-Ford Overview

+ Each router maintains a table
— Best known distance from Xto Y,
via Z as next hop = D,(X,Y)

Each node:

wait for (change in local link

+ Each local iteration caused by: cost or msg from neighbor)

— Local link cost change
— Message from neighbor

* Notify neighbors only if least cost
path to any destination changes
— Neighbors then notify their neighbors if
necessary

recompute distance table

if least cost path to any dest
has changed, notify

neighbors

Vs

Bellman-Ford Overview

+ Each router maintains a table
— Row for each possible destination
— Column for each directly-attached
neighbor to node
— Entry in row Y and column Z of node X
= best known distance from X to Y, via
Z as next hop = D,(X,Y)

Node A

3
5 B
1 C

7 D

EN) FARESHEv]
-] EAR--ANe}

Smallest distance in row Y = shortest
Distance of Ato Y, D(A, Y) J

Vs

Distance Vector Algorithm (cont’ d)

Y
(2\
Bellman-Ford Overview
« Each router maintains a table
— Row for each possible destination
— Column for each directly-attached
neighbor to node
— Entry in row Y and column Z of node X
= best known distance from X to Y, via
Z as next hop = D,(X,Y)
Neighbor
Node A (next-hop)
B C
3
5 B 2 8
1 C 3 7
7 DJaf s
Destinations‘ ‘ D.(A, D) Y,
(" 2\
. - ’
Distance Vector Algorithm (cont’ d)
1 Initialization:
2 for all neighbors V do * c(i,j): link cost from nodeito j
3 if V adjacent to A . . .
2 DA, V) = c(AV); D,(A,V): cost from Ato Vvia Z
5 else * D(AV): cost of A's best path to V
6 D(A, V) = «;
7 send D(A, Y) to all neighbors
loop:
8 wait (until A sees a link cost change to neighbor V /* case 1 */
9 or until A receives update from neighbor V) /* case 2 */
10 if (c(A,V) changes by *=d) /* < case 1%/
11 for all destinations Y that go through V do
12 Dy(A.Y)= DyAY) = d
13 else if (update D(V, Y) received from V) /* < case 2 */
I* shortest path from V to some Y has changed */
14 Dy(AY) = Dy(A,V) + D(V, Y); /* may also change D(A,Y) */
15 if (there is a new minimum for destination Y)
16 send D(A, Y) to all neighbors
7 forever 11/

Each node: initialize, then

wait for (change in local link
cost or msg from neighbor)

recompute distance table

if least cost path to any dest
has changed, notify

neighbors

2)

4 2\
. - ’
Distance Vector Algorithm (cont’ d)
1 Initialization:
2 for all neighbors V do * c(i,j): link cost from node i to j
3 if V adjacent to A . :
2 DA, V) = (AVY; D,(A,V): cost from Ato Vvia Z
5 else D(A,V): cost of A’s best path to V
6 D(A, V) = =;
7 send D(A, Y) to all neighbors
loop:
8 wait (until A sees a link cost change to neighbor V /* case 1 */
9 or until A receives update from neighbor V) /* case 2 */
10 if (c(A,V) changes by *d) /* < case 1*/
11 for all destinations Y that go through V do
12 Dy(AY) = Dy(AY) = d
13 else if (update D(V, Y) received from V) /* < case 2 */
/* shortest path from V to some Y has changed */
14 Dy(A,Y) = Dy(A\V) + D(V, Y); /*may also change D(A,Y) */
15 if (there is a new minimum for destination Y)
16 send D(A, Y) to all neighbors
7 forever 13/
(2\
Example: C sends update to A
Node A Node B
B C A|lC|D
3 B 2 8 A |2 0 [
2 C|=|7 C|lwo |1
1 D |~ | 8 D | o |
5
Dc(A, B) =D(AC) +D(C,B) =7+1=8
Dg(A, D) = D¢(A.C) + D(C,D) =7+1=8
Node C Node D
7| |loop:
. A| B | D B C
13 | else if (update D(A, Y) fromC)[A [7 [« o A o |
1 Dc(A,Y) = D(A,C) + D(C, Y);
15 | if (new min. for destination Y) B =1 |~ B i
1 send D(A, Y) to all neighbors | D | < | = | 1 C [1
17 [forever
J
4 2\
Example: After 1st Full Exchange
Node A Node B
B C A|C|D
3 B 2 8 A |2 8 | =
2 cla| 7| clol1]a
L Db |l5]s p|~]2]s
| 7
X,
Make sure you know why this is 3
— [Node D
Assume all send T™/B[D B |cC
A |7 3 | = A 5 8
messages at same [
. B 9 1 4 B 3 2
time D | = |4 clal1
\)

(" 2\

Example: Initialization
Node A Node B
C A|C|D
3 B 2 L] A |2 L] 0
2 Cl|lw |7 C | = w
1 D | o | D| o |«]|3
7
1| Initialization: tode ¢ tode b
2| |[for all neighbors V do A|B|D B | C
3 if V adjacentto A Al7 [« o A w0 | o
4 D(A, V) = c(A\V);
5| else Bl=|l = B 8]~
6 D(A, V) = ; D | o | = |1 C |~ |1
7| | send D(A, Y) to all neighbors
(" 2\

Example: Now B sends update to A

7

=Dy(AB)+D(B,C) =2+1=3
D) =2+3=5

Node A Node B
B C A C D
3 B 2 8 - A |2 [o
2 C 3 7 C o 1
N b5 |s D=~

71 Make sure you know why this is 5, not 4! | _

J| C
else if (update D(A, Y) fromB)[A [7 [« o A w0 | o
Dg(AY) = Dg(A,B) + D(B, Y);
if (new min. for destinationy) | B | © | 1 B |3~
send D(A, Y) to all neighbors | D | = | = | 1 C e 1
forever
4 2\

Example: No[How could we fix this?

Node A
B[C [Ic]bo
5 B|2]s A Lls |-
2 cls|7 c\p 1]
N D |5 |8 p['7]2]3

=
Da(B, C) = DA(B,A) + D(A, C) =2+3=5
D(B, D) = DA(B,A) + D(A, D) =2+5=7

Node C Node D
7| |loop:
. A | B D B C
else if (update D(B, Y) fromA)[A | 7 3| A 5 8
Da(B,Y) = DA(B,A) + D(A, Y);
if (new min. for destination Y) B 91 4 B 3 2
send D(B, Y) to all neighbors | D o | 4 C 4 1

forever

Example: End of 2" Full Exchange

Node A Node B
B C A C D
3 B 2 8 A 2 4 8
2 cla|[7| c|s[a1]a4
1 D |48 D|7]2]3
-
Node C Node D I
Assume all send B | D B|cC
messages at same ||~ 21 ° et A0 L1
N B|o|1]|3 B |3]2
fime D |12] 3|1 c |41

Intuition
« Initial state: best one-hop paths
» One simultaneous round: best two-hop paths

» Two simultaneous rounds: best three-hop paths

The key here is that the starting point is
.| not the initialization, but some other set of
entries. Convergence could be different!

» Must eventually converge

21

DV: Count to Infinity Problem ;551

50

Stable A-B changed Asends B sends C sends
state tables to B, C tables to C tables to B
Node A B|C B|C B|C B|C B|C
B| 4|51 |B]|60]51 B|60|51 B |60 |51 B |60 51
C| 5|50 C | 6150 C | 61|50 C | 61|50 C | 61|50
Node B A Al C AlC A|C Al C
Alals Aleo] 6 Aloo| s Aloo] e Aloo| 8
clol 1 cles| 1 cluof 1 c|uo| 1 cluof 1
Node C A | B A | B A | B A | B A | B
A|50| 5 A|50| 5 Al 50| 5 Al 50| 7 A|S0|7
B |54 1 B |54 1 B 101 1 B 101 1 B 101 1

i

Link cost changes here

“bad news travels slowly”
(not yet converged)®

Example: End of 3rd Full Exchange

Node A Node B
B | C Alcl|D
g B|2|s 2 |47
2 cla|7 514
ﬂ D|4]|s 6|23

A
C
D

If you can’t figure it | ™ © tode D
out after three AlBID 8¢
o 7 3 5 le>] A 5 4
minutes, ask your [T T3 s 1312
neighbor SEEIERE cl4]1

[What route does this 11 represent? }

1

- -

DV: Link Cost Changes

50

Stable A-B changed Asends B sends C sends
state tablesto B, C tablesto C tables to B
Nogle 2 B|C B|C B|C B|C B| C
B| 4|51 B| 1|51 B|1|51 B|1|51 B|1|51
C| 5|50 C|2]|50 C| 2|50 C|2]|50 2 | 50
Node B A A A A Al C
Al4| 6 All|6 All]|6 All|6 All]| 3
Cl9f1 Cl|6[1 C|3|1 C|3]1 C|3|1
Node C A|B A|B A|B A|B A|B
50| 5 50| 5 50 50| 2 50| 2

B|54|1 B|54|1 B|51|1 B|51|1 B |51

Link cost changes here

“good news travels fast”
22

60

- -

DV: Poisoned Reverse

- If B routes through C to get to A: 50
- Btells Cits (B's) distance to Ais infinite (so C won'’t route to A via B)

Stable A-B changed A sends B sends C sends
state tablesto B, C tablesto C tables to B
Node A B|C B|C B|C B|C B|C
B[4 |51 B | 60| 51 B | 60|51 B | 60| 51 B | 60| 51
5|50 C | 61|50 C| 61|50 C | 61|50 C| 61|50
Node B Al C Al C Al C Al C A|C
Ala Also| = Al60| = NER N

c| - 1 c| - 1 cluof 2 cluof 1 c|luof 1
Node C A|B A|B A|B A|B A|B
A|50| 5 A|50| 5 Al 0] S A 0|6t A0 e

B|54| 1 B | 54 B| = |1* B|~|* B|~|1?

f

Note: this converges after C receives,,

Link cost changes here another update from B

(N\

Will PR Solve C2I Problem Completely?

®)
e N
Can You Use Any Metric?
* We said that we can pick any metric. Really?
» What about maximizing capacity?
7)
e N

No agreement on metrics?

« If the nodes choose their paths according to
different criteria, then bad things might happen

* Example
—Node A is minimizing latency
—Node B is minimizing loss rate
—Node C is minimizing price

» Any of those goals are fine, if globally adopted
—Only a problem when nodes use different criteria

 Consider a routing algorithm where paths are
described by delay, cost, loss

=)

(" 2\
A few other inconvenient aspects

» What if we use a non-additive metric?
—E.g., maximal capacity

* What if routers don’t use the same metric?
—1 want low delay, you want low loss rate?

* What happens if nodes lie?

%)

(" 2\
What Happens Here?

| How could you fix this (without changing metric)? |
<«

%)

(" 2\

What Happens Here?

Cares about price,
then loss

|

Cares about delay,
Low price link (i [prfiee
ow.loss link LW

Cares about loss,
then delay

| Would path-vector fix this? y

(" 2\
Must agree on loop-avoiding metric

* When all nodes minimize same metric
» And that metric increases around loops

» Then process is guaranteed to converge

p
What happens when routers lie?

2

(2\
Routing: Just the Beginning

* What if router claims a 1-hop path to everywhere?
« All traffic from nearby routers gets sent there
» How can you tell if they are lying?

* Can this happen in real life?
—It has, several times....

« Link state and distance-vector (and path vector)
are the deployed routing paradigms

« But we know how to do much, much better...

« Stay tuned for a later lecture where we:
—Reduce convergence time to zero
—Deal with “policy oscillations”
— Enable multipath routing

=)

=)

