

Questions about Project 1

- Colin goes into cone of silence for next 30 hours
- So ask your questions now!

Today's Lecture: A little of everything

- Finishing up distance vector routing
- Last time we covered the good
-This time we cover the bad and the ugly
- Covering some "missing pieces"
- Maybe networking isn't as simple as I said....
- Lots of details today...
-So I will go slowly and ask you to do the computations
-Will have you ask your neighbors if you can't figure it out o If they can't figure it out, sit next to smarter people next time!

Two Ways to Avoid Loops

- Global state, local computation
-Link-state
-Broadcast local information, construct network map
- Local state, global computation
- Distance-Vector
- Minimizing "cost" will produce loop-free routes
- Iterative computation: no one knows the topology

Distance Vector Routing

- Each router knows the links to its neighbors - Does not flood this information to the whole network
- Each router has provisional "shortest path"
-E.g.: Router A: "I can get to router B with cost 11"
- Routers exchange this Distance-Vector information with their neighboring routers
- Vector because one entry per destination
- Why only advertise "best" path? Why not two best? - Loops and lies...
- Routers look over the set of options offered by their neighbors and select the best one
- Iterative process converges to set of shortest baths

Information Flow in Distance Vector

Bellman-Ford Algorithm

- INPUT:
-Link costs to each neighbor
-Not full topology
- OUTPUT:
-Next hop to each destination and the corresponding cost
-Does not give the complete path to the destination
- My neighbors tell me how far they are from dest'n
-Compute: (cost to nhbr) plus (nhbr's cost to destination)
- Pick minimum as my choice
- Advertise that cost to my neighbors

Bellman-Ford Overview

- Each router maintains a table
- Best known distance from X to Y , via Z as next hop $=D_{Z}(X, Y)$
- Each local iteration caused by:
- Local link cost change
- Message from neighbor
- Notify neighbors only if least cost path to any destination changes
- Neighbors then notify their neighbors if necessary

Each node:

Bellman-Ford Overview

- Each router maintains a table
- Row for each possible destination
- Column for each directly-attached neighbor to node
- Entry in row Y and column Z of node X
\Rightarrow best known distance from X to Y , via
Z as next hop $=D_{Z}(X, Y)$

- Row for maintains a table
- Column for each directly-attached neighbor to node
- Entry in row Y and column Z of node X
\Rightarrow best known distance from X to Y, via Z as next hop $=\mathrm{D}_{\mathrm{Z}}(\mathrm{X}, \mathrm{Y})$

Distance Vector Algorithm (cont' d)

Each node: initialize, then


```
Initialization:
    for all neighbors V do - c(i,j): link cost from node ito j
            if V adjacent to A , - D D (A,V): cost from A to V via Z
            D}(A,V)=c(A,V);\quad, D(A,V): cost of A's best path to V
            D}(A,V)=\infty
    send D(A,Y) to all neighbors
    oop:
    wait (until }A\mathrm{ sees a link cost change to neighbor V/* case 1*/
            or until }A\mathrm{ receives update from neighbor }V)/* case 2 *
    if (c(A,V) changes by }\pmd)/* \Leftarrowccase 1*
            for all destinations }Y\mathrm{ that go through V do
                D
    else if (update D(V,Y) received from V)/*}\Leftarrow\mathrm{ case 2 */
            /* shortest path from V to some Y has changed */
            D
    if (there is a new minimum for destination Y)
            send D}(A,Y)\mathrm{ to all neighbors
        forever
```


Example: Initialization

Example: End of 3rd Full Exchange

Will PR Solve C2I Problem Completely?

Can You Use Any Metric?

-We said that we can pick any metric. Really?
-What about maximizing capacity?

What Happens Here?

How could you fix this (without changing metric)?

No agreement on metrics?

- If the nodes choose their paths according to different criteria, then bad things might happen
- Example
- Node A is minimizing latency
- Node B is minimizing loss rate
- Node C is minimizing price
- Any of those goals are fine, if globally adopted
- Only a problem when nodes use different criteria
- Consider a routing algorithm where paths are described by delay, cost, loss

Must agree on loop-avoiding metric

- When all nodes minimize same metric
- And that metric increases around loops
- Then process is guaranteed to converge

What happens when routers lie?

- What if router claims a 1 -hop path to everywhere?
- All traffic from nearby routers gets sent there
- How can you tell if they are lying?
- Can this happen in real life?
-It has, several times....

Routing: Just the Beginning

- Link state and distance-vector (and path vector) are the deployed routing paradigms
- But we know how to do much, much better...
- Stay tuned for a later lecture where we:
- Reduce convergence time to zero
-Deal with "policy oscillations"
-Enable multipath routing

