
1

1

Even More Routing

EE122 Fall 2012

Scott Shenker

http://inst.eecs.berkeley.edu/~ee122/

Materials with thanks to Jennifer Rexford, Ion Stoica, Vern Paxson

and other colleagues at Princeton and UC Berkeley

Questions about Project 1

• Colin goes into cone of silence for next 30 hours

• So ask your questions now!

2

Today’s Lecture: A little of everything

• Finishing up distance vector routing
– Last time we covered the good

–This time we cover the bad and the ugly

• Covering some “missing pieces”
–Maybe networking isn’t as simple as I said….

• Lots of details today…
–So I will go slowly and ask you to do the computations

–Will have you ask your neighbors if you can’t figure it out
o If they can’t figure it out, sit next to smarter people next time!

3

Two Ways to Avoid Loops

• Global state, local computation
– Link-state

–Broadcast local information, construct network map

• Local state, global computation
–Distance-Vector

–Minimizing “cost” will produce loop-free routes

– Iterative computation: no one knows the topology

4

5

Distance Vector Routing

• Each router knows the links to its neighbors
–Does not flood this information to the whole network

• Each router has provisional “shortest path”
–E.g.: Router A: “I can get to router B with cost 11”

• Routers exchange this Distance-Vector
information with their neighboring routers
–Vector because one entry per destination

–Why only advertise “best” path? Why not two best?
o Loops and lies….

• Routers look over the set of options offered by
their neighbors and select the best one

• Iterative process converges to set of shortest
paths

6

Information Flow in Distance Vector

Host A

Host B
Host E

Host D

Host C

N1 N2

N3

N4

N5

N7 N6

2

Bellman-Ford Algorithm

• INPUT:
– Link costs to each neighbor

–Not full topology

• OUTPUT:
–Next hop to each destination and the corresponding cost

–Does not give the complete path to the destination

• My neighbors tell me how far they are from dest’n
–Compute: (cost to nhbr) plus (nhbr’s cost to destination)

–Pick minimum as my choice

–Advertise that cost to my neighbors

7 8

Bellman-Ford Overview

• Each router maintains a table
– Best known distance from X to Y,

 via Z as next hop = DZ(X,Y)

• Each local iteration caused by:
– Local link cost change

– Message from neighbor

• Notify neighbors only if least cost
path to any destination changes
– Neighbors then notify their neighbors if

necessary

wait for (change in local link

cost or msg from neighbor)

recompute distance table

if least cost path to any dest

has changed, notify

neighbors

Each node:

Bellman-Ford Overview

• Each router maintains a table
– Row for each possible destination

– Column for each directly-attached
neighbor to node

– Entry in row Y and column Z of node X
 best known distance from X to Y, via
 Z as next hop = DZ(X,Y)

A C

1 2

7

B D 3

1

B C

B 2 8

C 3 7

D 4 8

Node A

Neighbor

(next-hop)

Destinations DC(A, D)

Bellman-Ford Overview

• Each router maintains a table
– Row for each possible destination

– Column for each directly-attached
neighbor to node

– Entry in row Y and column Z of node X
 best known distance from X to Y, via
 Z as next hop = DZ(X,Y)

A C

1 2

7

B D 3

1

B C

B 2 8

C 3 7

D 4 8

Node A

Smallest distance in row Y = shortest

Distance of A to Y, D(A, Y)

11

Distance Vector Algorithm (cont’d)

1 Initialization:

2 for all neighbors V do

3 if V adjacent to A

4 D(A, V) = c(A,V);

5 else

6 D(A, V) = ∞;

7 send D(A, Y) to all neighbors

 loop:

8 wait (until A sees a link cost change to neighbor V /* case 1 */

9 or until A receives update from neighbor V) /* case 2 */

10 if (c(A,V) changes by ±d) /*  case 1 */

11 for all destinations Y that go through V do

12 DV(A,Y) = DV(A,Y) ± d

13 else if (update D(V, Y) received from V) /*  case 2 */

 /* shortest path from V to some Y has changed */

14 DV(A,Y) = DV(A,V) + D(V, Y); /* may also change D(A,Y) */

15 if (there is a new minimum for destination Y)

16 send D(A, Y) to all neighbors

17 forever

• c(i,j): link cost from node i to j

• DZ(A,V): cost from A to V via Z

• D(A,V): cost of A’s best path to V

12

Distance Vector Algorithm (cont’d)

wait for (change in local link

cost or msg from neighbor)

recompute distance table

if least cost path to any dest

has changed, notify

neighbors

Each node: initialize, then

3

13

Distance Vector Algorithm (cont’d)

1 Initialization:

2 for all neighbors V do

3 if V adjacent to A

4 D(A, V) = c(A,V);

5 else

6 D(A, V) = ∞;

7 send D(A, Y) to all neighbors

 loop:

8 wait (until A sees a link cost change to neighbor V /* case 1 */

9 or until A receives update from neighbor V) /* case 2 */

10 if (c(A,V) changes by ±d) /*  case 1 */

11 for all destinations Y that go through V do

12 DV(A,Y) = DV(A,Y) ± d

13 else if (update D(V, Y) received from V) /*  case 2 */

 /* shortest path from V to some Y has changed */

14 DV(A,Y) = DV(A,V) + D(V, Y); /* may also change D(A,Y) */

15 if (there is a new minimum for destination Y)

16 send D(A, Y) to all neighbors

17 forever

• c(i,j): link cost from node i to j

• DZ(A,V): cost from A to V via Z

• D(A,V): cost of A’s best path to V

Example: Initialization

A C

1 2

7

B D 3

1

B C

B 2 ∞

C ∞ 7

D ∞ ∞

Node A

A C D

A 2 ∞ ∞

C ∞ 1 ∞

D ∞ ∞ 3

Node B

Node C

A B D

A 7 ∞ ∞

B ∞ 1 ∞

D ∞ ∞ 1

B C

A ∞ ∞

B 3 ∞

C ∞ 1

Node D
1 Initialization:

2 for all neighbors V do

3 if V adjacent to A

4 D(A, V) = c(A,V);

5 else

6 D(A, V) = ∞;

7 send D(A, Y) to all neighbors

Example: C sends update to A

A C

1 2

7

B D 3

1

B C

B 2 8

C ∞ 7

D ∞ 8

Node A

A C D

A 2 ∞ ∞

C ∞ 1 ∞

D ∞ ∞ 3

Node B

Node C

A B D

A 7 ∞ ∞

B ∞ 1 ∞

D ∞ ∞ 1

B C

A ∞ ∞

B 3 ∞

C ∞ 1

Node D
7 loop:

 …

13 else if (update D(A, Y) from C)

14 DC(A,Y) = DC(A,C) + D(C, Y);

15 if (new min. for destination Y)

16 send D(A, Y) to all neighbors

17 forever

DC(A, B) = DC(A,C) + D(C, B) = 7 + 1 = 8

DC(A, D) = DC(A,C) + D(C, D) = 7 + 1 = 8

Example: Now B sends update to A

A C

1 2

7

B D 3

1

B C

B 2 8

C 3 7

D 5 8

Node A

A C D

A 2 ∞ ∞

C ∞ 1 ∞

D ∞ ∞ 3

Node B

Node C

A B D

A 7 ∞ ∞

B ∞ 1

D ∞ ∞ 1

Node D
7 loop:

 …

13 else if (update D(A, Y) from B)

14 DB(A,Y) = DB(A,B) + D(B, Y);

15 if (new min. for destination Y)

16 send D(A, Y) to all neighbors

17 forever

DB(A, C) = DB(A,B) + D(B, C) = 2 + 1 = 3

DB(A, D) = DB(A,B) + D(B, D) = 2 + 3 = 5

B C

A ∞ ∞

B 3 ∞

C ∞ 1

Make sure you know why this is 5, not 4!

Example: After 1st Full Exchange

A C

1 2

7

B D 3

1

B C

B 2 8

C 3 7

D 5 8

Node A Node B

Node C

A B D

A 7 3 ∞

B 9 1 4

D ∞ 4 1

Node D

B C

A 5 8

B 3 2

C 4 1

End of 1st Iteration

All nodes knows the

best two-hop paths

A C D

A 2 8 ∞

C 9 1 4

D ∞ 2 3

Make sure you know why this is 3

Assume all send

messages at same

time

Example: Now A sends update to B

A C

1 2

7

B D 3

1

B C

B 2 8

C 3 7

D 5 8

Node A Node B

Node C

A B D

A 7 3 ∞

B 9 1 4

D ∞ 4 1

Node D

B C

A 5 8

B 3 2

C 4 1

A C D

A 2 8 ∞

C 5 1 4

D 7 2 3

7 loop:

 …

13 else if (update D(B, Y) from A)

14 DA(B,Y) = DA(B,A) + D(A, Y);

15 if (new min. for destination Y)

16 send D(B, Y) to all neighbors

17 forever

DA(B, C) = DA(B,A) + D(A, C) = 2 + 3 = 5

DA(B, D) = DA(B,A) + D(A, D) = 2 + 5 = 7

Where does this 5 come from? Where does this 7 come from? What harm does this cause? How could we fix this?

4

Example: End of 2nd Full Exchange

A C

1 2

7

B D 3

1

B C

B 2 8

C 3 7

D 4 8

Node A

A C D

A 2 4 8

C 5 1 4

D 7 2 3

Node B

Node C

A B D

A 7 3 6

B 9 1 3

D 12 3 1

Node D

B C

A 5 4

B 3 2

C 4 1

End of 2nd Iteration

All nodes knows the

best three-hop paths

Assume all send

messages at same

time

Example: End of 3rd Full Exchange

A C

1 2

7

B D 3

1

B C

B 2 8

C 3 7

D 4 8

Node A

A C D

A 2 4 7

C 5 1 4

D 6 2 3

Node B

Node C

A B D

A 7 3 5

B 9 1 3

D 11 3 1

Node D

B C

A 5 4

B 3 2

C 4 1

End of 3rd Iteration:

Algorithm

Converges!

What route does this 11 represent?

Assume all send

messages at same

time

If you can’t figure it

out after three

minutes, ask your

neighbor

Intuition

• Initial state: best one-hop paths

• One simultaneous round: best two-hop paths

• Two simultaneous rounds: best three-hop paths

• …

• Kth simultaneous round: best (k+1) hop paths

• Must eventually converge
– as soon as it reaches longest best path

• …..but how does it respond to changes in cost? 21

The key here is that the starting point is

not the initialization, but some other set of

entries. Convergence could be different!

22

DV: Link Cost Changes

A C

A 4 6

C 9 1

Node B

A B

A 50 5

B 54 1

Node C

Link cost changes here

A C

A 1 6

C 6 1

A B

A 50 5

B 54 1

A C

A 1 6

C 3 1

A B

A 50 5

B 51 1

A C

A 1 6

C 3 1

A B

A 50 2

B 51 1

B C

B 4 51

C 5 50

Node A B C

B 1 51

C 2 50

B C

B 1 51

C 2 50

B C

B 1 51

C 2 50

A C

A 1 3

C 3 1

A B

A 50 2

B 51 1

B C

B 1 51

C 2 50

Stable

state

A-B changed A sends

tables to B, C

B sends

tables to C

C sends

tables to B

A C

1 4

50

B
1

“good news travels fast”

DV: Count to Infinity Problem

23

A C

A 4 6

C 9 1

Node B

A B

A 50 5

B 54 1

Node C

Link cost changes here

A C

A 60 6

C 65 1

A B

A 50 5

B 54 1

A C

A 60 6

C 110 1

A B

A 50 5

B 101 1

A C

A 60 6

C 110 1

A B

A 50 7

B 101 1

B C

B 4 51

C 5 50

Node A B C

B 60 51

C 61 50

B C

B 60 51

C 61 50

B C

B 60 51

C 61 50

A C

A 60 8

C 110 1

A B

A 50 7

B 101 1

B C

B 60 51

C 61 50

Stable

state

A-B changed A sends

tables to B, C

B sends

tables to C

C sends

tables to B

A C

1 4

50

B
60

“bad news travels slowly”

(not yet converged)

DV: Poisoned Reverse

24

A C

A 4 ∞

C ∞ 1

Node B

A B

A 50 5

B 54 1

Node C

Link cost changes here

A C

A 60 ∞

C ∞ 1

A B

A 50 5

B 54 1

A C

A 60 ∞

C 110 1

A B

A 50 5

B ∞ 1

A C

A 60 ∞

C 110 1

A B

A 50 61

B ∞ 1

B C

B 4 51

C 5 50

Node A B C

B 60 51

C 61 50

B C

B 60 51

C 61 50

B C

B 60 51

C 61 50

A C

A 60 51

C 110 1

A B

A 50 61

B ∞ 1

B C

B 60 51

C 61 50

Stable

state

A-B changed A sends

tables to B, C

B sends

tables to C

C sends

tables to B

A C

1 4

50

B
60

• If B routes through C to get to A:

- B tells C its (B’s) distance to A is infinite (so C won’t route to A via B)

Note: this converges after C receives

another update from B

5

Will PR Solve C2I Problem Completely?

25

A C
1

B

D

1

1 1
1 1

2 2

∞

∞ ∞

100

100 100

3

∞

4

∞ 4

5

6

A few other inconvenient aspects

• What if we use a non-additive metric?
–E.g., maximal capacity

• What if routers don’t use the same metric?
– I want low delay, you want low loss rate?

• What happens if nodes lie?

26

Can You Use Any Metric?

• We said that we can pick any metric. Really?

• What about maximizing capacity?

27

What Happens Here?

28

All nodes want to maximize capacity A high capacity link gets reduced to low capacity Problem:“cost” does not change around loop How could you fix this (without changing metric)?

No agreement on metrics?

• If the nodes choose their paths according to

different criteria, then bad things might happen

• Example
–Node A is minimizing latency

–Node B is minimizing loss rate

–Node C is minimizing price

• Any of those goals are fine, if globally adopted
–Only a problem when nodes use different criteria

• Consider a routing algorithm where paths are

described by delay, cost, loss
29

What Happens Here?

30

Low price link

Low loss link

Low delay link Low loss link

Low delay link

Low price link

Cares about price,

then loss

Cares about delay,

then price

Cares about loss,

then delay

Go figure this out in groups! Would path-vector fix this?

6

Must agree on loop-avoiding metric

• When all nodes minimize same metric

• And that metric increases around loops

• Then process is guaranteed to converge

31

What happens when routers lie?

• What if router claims a 1-hop path to everywhere?

• All traffic from nearby routers gets sent there

• How can you tell if they are lying?

• Can this happen in real life?
– It has, several times….

32

Routing: Just the Beginning

• Link state and distance-vector (and path vector)

are the deployed routing paradigms

• But we know how to do much, much better…

• Stay tuned for a later lecture where we:
–Reduce convergence time to zero

–Deal with “policy oscillations”

–Enable multipath routing

33

